#+TITLE: algo * Orga + Klausur Fr 07.02.2020 14-16 Uhr + Nachklausur: Mo 06.04.2020 14-16 Uhr * 18.10.2019 2.VL ** Merge Sort: \(T(n) = 2 T(\fraq{n}{2}) + n\) _Beh:_ T(n) = 0(n * log(n)) _Bew:_ \( T(2) = 1 \le O(2n*log\,2) = o(1)\) _n/2 -> n:__ \(T(n) \le 2 * c * \fraq{n}{2} * log(\fraq{n}{2}) + n)\) \(T(n) \le c * n * log(\fraq{n}{2}) + n)\) \(\le c * n * (log n - log 2) + n\ \(< c * n * log n - c * n + n \leq c * n * log(n)\) ** Binäre Suche _Beh:_ T(n) = O(log n) _Bew:_ I.A: \(\begin{equation} T(2) = 2 = O(1) \\ \fraq{n}{2} \rightarrow n \colon T(n) &\le c * log (\fraq{n}{2}) + 1\\ &= c * (log n - log 2) + 1\\ &= c * log n - c +1\\ &\leq c * log n \end{equation}\) für c \geq 1 ** Mastertheorem: log_{b}a = log_{2} 2 = _1_ f(n) = n = n^{_1_} \Rightarrow T(n) = O(n^{1 * log_{2*}^{}n) 2. T(n) = 9 * T (\fraq{n}{3} * + n^{2} \rightarrow log_{b}a = log_{3}9 = 2 f(n) = n^{2} = n^{log_{3}9} = 2 f(n) = n² = n^{log_{3}9 \Rightarrow T(n) = O(n² * log_{3}n) = O(n² log(n) f(n) = n = n^{2-1} \Rightarrow T(n) = O(n²) ** Bsp: a) \(T(n) = 4 * T (n/2) + n\\ log_{2} 4 = 2\,\,f(n) = n \le n^{2-\epsilon} \rigtharrow T(n) = O(n^{2})\) für \epsilon = 1/2 b) \( T(n) (\fraq{n}{2}) + n^{3/2} \le Tn^{2- \epsilion} \Rightarrow t(n) = O(n^{2}) \) c) \( T(n) (\fraq{n}{2}) + n^{2} f(n) = n^{2} = n^{log_{b}a} \Rightarrow T(n) = O(n^{2} * log n\) d) \( T(n) (\fraq{n}{2}) + n^{3} f(n) = n^{3} > n^{2+ \epsilon }\Rightarrow T(n) = o (f(n)) = O(n^{3}) \) e) \(T(n) = 8 * T(\frqa{n}{2} + n^{1} \rightarrow [1.] O(n^{3})\) f) \(T(n) = 8 * T(\frqa{n}{2} + n^{³} \rightarrow[2.] O(n^{3} * log n)\) T(n) = 2 * T(n/2) + n^{1 + \epsilon} , \epsilon > 0 \Rightarrow [3.] T(n) = O(n^{1+\epsilon}) T(n) = 2 * T(n/2) + _n log n_ < n^{1}+\epsilon \forall \epsilon > 0 \Rightarrow M.T. nicht anwendbar