1.8 KiB
1.8 KiB
algo
Orga
- Klausur Fr 07.02.2020 14-16 Uhr
- Nachklausur: Mo 06.04.2020 14-16 Uhr
18.10.2019 2.VL
Merge Sort: \(T(n) = 2 T(\fraq{n}{2}) + n\)
Beh: T(n) = 0(n * log(n)) Bew: \( T(2) = 1 \le O(2n*log\,2) = o(1)\) n/2 -> n:_ \(T(n) \le 2 * c * \fraq{n}{2} * log(\fraq{n}{2}) + n)\) \(T(n) \le c * n * log(\fraq{n}{2}) + n)\) \(\le c * n * (log n - log 2) + n\ \(< c * n * log n - c * n + n \leq c * n * log(n)\)
Binäre Suche
Beh: T(n) = O(log n) Bew: I.A: \(\begin{equation} T(2) = 2 = O(1) \\ \fraq{n}{2} \rightarrow n \colon T(n) &\le c * log (\fraq{n}{2}) + 1\\ &= c * (log n - log 2) + 1\\ &= c * log n - c +1\\ &\leq c * log n \end{equation}\) für c ≥ 1
Mastertheorem:
logba = log2 2 = 1 f(n) = n = n_1_ ⇒ T(n) = O(n^{1 * log2*^{}n)
- T(n) = 9 * T (\fraq{n}{3} * + n2 → logba = log39 = 2 f(n) = n2 = n^{log39} = 2 f(n) = n² = n^{log39 ⇒ T(n) = O(n² * log3n) = O(n² log(n) f(n) = n = n2-1 ⇒ T(n) = O(n²)
Bsp:
- \(T(n) = 4 * T (n/2) + n\\ log_{2} 4 = 2\,\,f(n) = n \le n^{2-\epsilon} \rigtharrow T(n) = O(n^{2})\) für ε = 1/2
- \( T(n) (\fraq{n}{2}) + n^{3/2} \le Tn^{2- \epsilion} \Rightarrow t(n) = O(n^{2}) \)
- \( T(n) (\fraq{n}{2}) + n2 f(n) = n2 = n^{logba} ⇒ T(n) =
O(n2 * log n\)
- \( T(n) (\fraq{n}{2}) + n3 f(n) = n3 > n2+ ε ⇒ T(n) = o (f(n))
= O(n3) \)
- \(T(n) = 8 * T(\frqa{n}{2} + n^{1} \rightarrow [1.] O(n^{3})\)
- \(T(n) = 8 * T(\frqa{n}{2} + n^{³} \rightarrow[2.] O(n^{3} * log n)\)
T(n) = 2 * T(n/2) + n1 + ε , ε > 0 ⇒ [3.] T(n) = O(n1+ε) T(n) = 2 * T(n/2) + n log n < n1+ε ∀ ε > 0 ⇒ M.T. nicht anwendbar