Moved ESP aRest project to sensornode_aRest.

New sensornode with http.get function
This commit is contained in:
2017-09-16 17:48:28 +02:00
parent 792e300186
commit 4430a92f17
5 changed files with 478 additions and 43 deletions

View File

@@ -1,11 +1,8 @@
#include "DHT.h" #include "DHT.h"
#include <ESP8266WiFi.h> #include <ESP8266WiFi.h>
#include "aREST.h" #include <ESP8266HTTPClient.h>
#include <climits>
//If the debug macro is enabled, there's a freeMemory routine #include <climits>
//Check if this resolves the crashes...
#define DEBUG_MODE 1
//DHT settings: //DHT settings:
@@ -25,21 +22,10 @@
// as the current DHT reading algorithm adjusts itself to work on faster procs. // as the current DHT reading algorithm adjusts itself to work on faster procs.
DHT dht(DHTPIN, DHTTYPE); DHT dht(DHTPIN, DHTTYPE);
// Create aREST instance
aREST rest = aREST();
// WiFi settings: // WiFi settings:
const char* ssid = "Your_SSID"; const char* ssid = "Klenkschachtel";
const char* password = "Your_Password"; const char* password = "KS!;3k@S$h=?AL";
#define LISTEN_PORT 80
// Create an instance of the server
WiFiServer server(LISTEN_PORT);
// Variables to be exposed to the API
float temperature;
float humidity;
//milli counter //milli counter
@@ -60,15 +46,6 @@ void setup() {
//dht driver initialization //dht driver initialization
dht.begin(); dht.begin();
//Expose variables to the rest api
rest.variable("temperature", &temperature);
rest.variable("humidity", &humidity);
// Set a ID (ID must be greater than 0)
rest.set_id("1");
rest.set_name("sensornode");
// Connect to WiFi // Connect to WiFi
Serial.println("Connecting to wlan"); Serial.println("Connecting to wlan");
WiFi.begin(ssid, password); WiFi.begin(ssid, password);
@@ -78,10 +55,6 @@ void setup() {
} }
Serial.println("\nWiFi connected"); Serial.println("\nWiFi connected");
// Start the server
server.begin();
Serial.println("Server started");
// Print the IP address // Print the IP address
Serial.println(WiFi.localIP()); Serial.println(WiFi.localIP());
} }
@@ -102,9 +75,14 @@ void loop() {
Serial.println("Failed to read from DHT sensor!"); Serial.println("Failed to read from DHT sensor!");
return; return;
} else { } else {
//set the new values // Initialize the client library
humidity = h; HTTPClient client;
temperature = t;
// Make a HTTP request:
String url = "http://raspitemp:1337/abshum/" + String(t) + "/" + String(h);
client.begin(url);
client.GET();
client.end();
} }
//set new milli counter //set new milli counter
@@ -115,16 +93,9 @@ void loop() {
millitotal = 0; millitotal = 0;
} }
} }
// Handle REST calls
WiFiClient client = server.available();
if (!client) {
return;
}
while(!client.available()){
delay(1);
}
rest.handle(client);
//ESP.deepSleep(MEASURESECONDS * 1000);
//Let the esp chill a bit //Let the esp chill a bit
delay(100); delay(100);
} }

View File

@@ -0,0 +1,259 @@
/* DHT library
MIT license
written by Adafruit Industries
*/
#include "DHT.h"
#define MIN_INTERVAL 2000
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
_pin = pin;
_type = type;
#ifdef __AVR
_bit = digitalPinToBitMask(pin);
_port = digitalPinToPort(pin);
#endif
_maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for
// reading pulses from DHT sensor.
// Note that count is now ignored as the DHT reading algorithm adjusts itself
// basd on the speed of the processor.
}
void DHT::begin(void) {
// set up the pins!
pinMode(_pin, INPUT_PULLUP);
// Using this value makes sure that millis() - lastreadtime will be
// >= MIN_INTERVAL right away. Note that this assignment wraps around,
// but so will the subtraction.
_lastreadtime = -MIN_INTERVAL;
DEBUG_PRINT("Max clock cycles: "); DEBUG_PRINTLN(_maxcycles, DEC);
}
//boolean S == Scale. True == Fahrenheit; False == Celcius
float DHT::readTemperature(bool S, bool force) {
float f = NAN;
if (read(force)) {
switch (_type) {
case DHT11:
f = data[2];
if(S) {
f = convertCtoF(f);
}
break;
case DHT22:
case DHT21:
f = data[2] & 0x7F;
f *= 256;
f += data[3];
f *= 0.1;
if (data[2] & 0x80) {
f *= -1;
}
if(S) {
f = convertCtoF(f);
}
break;
}
}
return f;
}
float DHT::convertCtoF(float c) {
return c * 1.8 + 32;
}
float DHT::convertFtoC(float f) {
return (f - 32) * 0.55555;
}
float DHT::readHumidity(bool force) {
float f = NAN;
if (read()) {
switch (_type) {
case DHT11:
f = data[0];
break;
case DHT22:
case DHT21:
f = data[0];
f *= 256;
f += data[1];
f *= 0.1;
break;
}
}
return f;
}
//boolean isFahrenheit: True == Fahrenheit; False == Celcius
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
// Using both Rothfusz and Steadman's equations
// http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
float hi;
if (!isFahrenheit)
temperature = convertCtoF(temperature);
hi = 0.5 * (temperature + 61.0 + ((temperature - 68.0) * 1.2) + (percentHumidity * 0.094));
if (hi > 79) {
hi = -42.379 +
2.04901523 * temperature +
10.14333127 * percentHumidity +
-0.22475541 * temperature*percentHumidity +
-0.00683783 * pow(temperature, 2) +
-0.05481717 * pow(percentHumidity, 2) +
0.00122874 * pow(temperature, 2) * percentHumidity +
0.00085282 * temperature*pow(percentHumidity, 2) +
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
if((percentHumidity < 13) && (temperature >= 80.0) && (temperature <= 112.0))
hi -= ((13.0 - percentHumidity) * 0.25) * sqrt((17.0 - abs(temperature - 95.0)) * 0.05882);
else if((percentHumidity > 85.0) && (temperature >= 80.0) && (temperature <= 87.0))
hi += ((percentHumidity - 85.0) * 0.1) * ((87.0 - temperature) * 0.2);
}
return isFahrenheit ? hi : convertFtoC(hi);
}
boolean DHT::read(bool force) {
// Check if sensor was read less than two seconds ago and return early
// to use last reading.
uint32_t currenttime = millis();
if (!force && ((currenttime - _lastreadtime) < 2000)) {
return _lastresult; // return last correct measurement
}
_lastreadtime = currenttime;
// Reset 40 bits of received data to zero.
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
// Send start signal. See DHT datasheet for full signal diagram:
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
// Go into high impedence state to let pull-up raise data line level and
// start the reading process.
digitalWrite(_pin, HIGH);
delay(250);
// First set data line low for 20 milliseconds.
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
delay(20);
uint32_t cycles[80];
{
// Turn off interrupts temporarily because the next sections are timing critical
// and we don't want any interruptions.
InterruptLock lock;
// End the start signal by setting data line high for 40 microseconds.
digitalWrite(_pin, HIGH);
delayMicroseconds(40);
// Now start reading the data line to get the value from the DHT sensor.
pinMode(_pin, INPUT_PULLUP);
delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
// First expect a low signal for ~80 microseconds followed by a high signal
// for ~80 microseconds again.
if (expectPulse(LOW) == 0) {
DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
_lastresult = false;
return _lastresult;
}
if (expectPulse(HIGH) == 0) {
DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
_lastresult = false;
return _lastresult;
}
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count). Note that for speed all
// the pulses are read into a array and then examined in a later step.
for (int i=0; i<80; i+=2) {
cycles[i] = expectPulse(LOW);
cycles[i+1] = expectPulse(HIGH);
}
} // Timing critical code is now complete.
// Inspect pulses and determine which ones are 0 (high state cycle count < low
// state cycle count), or 1 (high state cycle count > low state cycle count).
for (int i=0; i<40; ++i) {
uint32_t lowCycles = cycles[2*i];
uint32_t highCycles = cycles[2*i+1];
if ((lowCycles == 0) || (highCycles == 0)) {
DEBUG_PRINTLN(F("Timeout waiting for pulse."));
_lastresult = false;
return _lastresult;
}
data[i/8] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if (highCycles > lowCycles) {
// High cycles are greater than 50us low cycle count, must be a 1.
data[i/8] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
}
DEBUG_PRINTLN(F("Received:"));
DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? "));
DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX);
// Check we read 40 bits and that the checksum matches.
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
_lastresult = true;
return _lastresult;
}
else {
DEBUG_PRINTLN(F("Checksum failure!"));
_lastresult = false;
return _lastresult;
}
}
// Expect the signal line to be at the specified level for a period of time and
// return a count of loop cycles spent at that level (this cycle count can be
// used to compare the relative time of two pulses). If more than a millisecond
// ellapses without the level changing then the call fails with a 0 response.
// This is adapted from Arduino's pulseInLong function (which is only available
// in the very latest IDE versions):
// https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c
uint32_t DHT::expectPulse(bool level) {
uint32_t count = 0;
// On AVR platforms use direct GPIO port access as it's much faster and better
// for catching pulses that are 10's of microseconds in length:
#ifdef __AVR
uint8_t portState = level ? _bit : 0;
while ((*portInputRegister(_port) & _bit) == portState) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
// Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266
// right now, perhaps bugs in direct port access functions?).
#else
while (digitalRead(_pin) == level) {
if (count++ >= _maxcycles) {
return 0; // Exceeded timeout, fail.
}
}
#endif
return count;
}

View File

@@ -0,0 +1,75 @@
/* DHT library
MIT license
written by Adafruit Industries
*/
#ifndef DHT_H
#define DHT_H
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
// Uncomment to enable printing out nice debug messages.
//#define DHT_DEBUG
// Define where debug output will be printed.
#define DEBUG_PRINTER Serial
// Setup debug printing macros.
#ifdef DHT_DEBUG
#define DEBUG_PRINT(...) { DEBUG_PRINTER.print(__VA_ARGS__); }
#define DEBUG_PRINTLN(...) { DEBUG_PRINTER.println(__VA_ARGS__); }
#else
#define DEBUG_PRINT(...) {}
#define DEBUG_PRINTLN(...) {}
#endif
// Define types of sensors.
#define DHT11 11
#define DHT22 22
#define DHT21 21
#define AM2301 21
class DHT {
public:
DHT(uint8_t pin, uint8_t type, uint8_t count=6);
void begin(void);
float readTemperature(bool S=false, bool force=false);
float convertCtoF(float);
float convertFtoC(float);
float computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit=true);
float readHumidity(bool force=false);
boolean read(bool force=false);
private:
uint8_t data[5];
uint8_t _pin, _type;
#ifdef __AVR
// Use direct GPIO access on an 8-bit AVR so keep track of the port and bitmask
// for the digital pin connected to the DHT. Other platforms will use digitalRead.
uint8_t _bit, _port;
#endif
uint32_t _lastreadtime, _maxcycles;
bool _lastresult;
uint32_t expectPulse(bool level);
};
class InterruptLock {
public:
InterruptLock() {
noInterrupts();
}
~InterruptLock() {
interrupts();
}
};
#endif

View File

@@ -0,0 +1,130 @@
#include "DHT.h"
#include <ESP8266WiFi.h>
#include "aREST.h"
#include <climits>
//If the debug macro is enabled, there's a freeMemory routine
//Check if this resolves the crashes...
#define DEBUG_MODE 1
//DHT settings:
#define DHTPIN 14 // what digital pin we're connected to
#define MEASURESECONDS 60 //shouldn't be < 2sec
// Uncomment whatever type you're using!
//#define DHTTYPE DHT11 // DHT 11
#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321
//#define DHTTYPE DHT21 // DHT 21 (AM2301)
// Initialize DHT sensor.
// Note that older versions of this library took an optional third parameter to
// tweak the timings for faster processors. This parameter is no longer needed
// as the current DHT reading algorithm adjusts itself to work on faster procs.
DHT dht(DHTPIN, DHTTYPE);
// Create aREST instance
aREST rest = aREST();
// WiFi settings:
const char* ssid = "Your_SSID";
const char* password = "Your_Password";
#define LISTEN_PORT 80
// Create an instance of the server
WiFiServer server(LISTEN_PORT);
// Variables to be exposed to the API
float temperature;
float humidity;
//milli counter
unsigned long millitotal = 0;
float millicounter = 0;
//Temp variables
float h, t;
//First measurement
bool firstmeasurement = true;
void setup() {
Serial.begin(115200);
Serial.println("Sensornode start");
//dht driver initialization
dht.begin();
//Expose variables to the rest api
rest.variable("temperature", &temperature);
rest.variable("humidity", &humidity);
// Set a ID (ID must be greater than 0)
rest.set_id("1");
rest.set_name("sensornode");
// Connect to WiFi
Serial.println("Connecting to wlan");
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("\nWiFi connected");
// Start the server
server.begin();
Serial.println("Server started");
// Print the IP address
Serial.println(WiFi.localIP());
}
void loop() {
// Wait a few seconds between measurements.
millicounter = millis();
if (millicounter >= millitotal) {
// Reading temperature or humidity takes about 250 milliseconds!
// Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
h = dht.readHumidity();
// Read temperature as Celsius (the default)
t = dht.readTemperature();
// Check if any reads failed and exit early (to try again).
if (isnan(h) || isnan(t)) {
Serial.println("Failed to read from DHT sensor!");
return;
} else {
//set the new values
humidity = h;
temperature = t;
}
//set new milli counter
//millis will overflow after approx. 52 days. To prevent errors we're checking the limits
if (millis() + (MEASURESECONDS * 1000) <= ULONG_MAX) {
millitotal = millis() + (MEASURESECONDS * 1000);
} else {
millitotal = 0;
}
}
// Handle REST calls
WiFiClient client = server.available();
if (!client) {
return;
}
while(!client.available()){
delay(1);
}
rest.handle(client);
//Let the esp chill a bit
delay(100);
}